Статистика и котики - Страница 15


К оглавлению

15


Особенность такой модели в том, что мы подробно не рассматриваем состав этого счастья. Счастье для нас — некий целостный объект, целевая переменная, которая может меняться: прибывать или убывать. А вот структурные модели позволяют описать его компоненты: от удовлетворения базовых котиковых потребностей до котиковой самореализации.



Как правило, функциональные модели записываются с помощью уравнений. А вот структурные могут быть достаточно разнообразными: от таблиц до блок-схем.

Любая математическая модель строится в два этапа. На первом этапе мы прикидываем, какие факторы в принципе могут влиять на котиковое счастье или из каких компонентов оно может состоять. Этот этап называется также построением содержательной модели.

Второй этап включает в себя сбор реальных данных и их математическую обработку. Он называется построением формальной модели. Формальную модель уже можно использовать как аналог реального котика. Изменяя различные параметры этой модели, вы сможете понять, как функционирует котик, не прибегая к опытам над животными.


НЕМАЛОВАЖНО ЗНАТЬ!

Классификация математических моделей


Помимо деления на функциональные и структурные модели есть еще несколько классификаций, о которых полезно знать. В частности бывают модели статические и динамические. Первые описывают состояние котика в какой-то конкретный момент. Вторые же концентрируются непосредственно на изменениях, которые претерпевает котик.



Кроме того, модели делятся на линейные и нелинейные. Линейные модели включают в себя только линейные взаимосвязи, о которых мы подробно говорили в главах про корреляционный и регрессионный анализы. Нелинейные модели могут включать в себя нелинейные взаимосвязи. Примером здесь может служить полиномиальная регрессия.



Также имеет смысл рассмотреть деление моделей на непрерывные и дискретные. Первые отличаются тем, что в них все переменные имеют бесконечное множество значений. Пример такой переменной — это котиковый размер, измеренный в сантиметрах. Мы можем сказать, что наш котик имеет длину 62 см. А можем — что 62,513987 см. И даже точнее. Если состояние вашего котика измеряется такой переменной, то, чтобы построить функциональную модель, вам необходима линейная регрессия.

Дискретные же модели работают с переменными, которые имеют ограниченное количество значений. Например, тот же размер, но имеющий только три значения: маленький, средний и большой. Построить модели с дискретными целевыми переменными, в частности, позволяют логистическая регрессия и дискриминантный анализ.



Впрочем, на практике большинство моделей относятся к смешанным типам — в них встречаются как дискретные, так и непрерывные переменные, а линейные взаимосвязи вполне могут сочетаться с нелинейными.

Глава 13. Разновидности котиков
или основы кластерного анализа

Из предыдущих разделов мы узнали, как определить, какие факторы делают наших котиков счастливыми. В этом нам помогли регрессионный и дискриминантный анализы. Зная значения этих факторов, мы можем предсказать, будет ли тот или иной котик счастливым или несчастным. Иными словами, мы можем рассортировать котиков по классам, т. е. классифицировать их.



Вообще, задача классификации является крайне важной практически для всех наук, изучающих котиков. Но довольно часто мы не имеем никакого понятия даже о том, на какие группы делятся котики. Ведь котики очень разные. Поэтому существуют методы, которые позволяют не только рассортировывать котиков на группы, но и выделять сами эти группы. И все вместе они называются кластерным анализом.

В первом приближении у нас могут возникнуть две ситуации. Первая — мы знаем, на сколько групп у нас должны делиться котики, но не имеем понятия, где эти группы находятся. Вторая — мы не знаем итоговое количество групп. Со второго случая мы, пожалуй, и начнем.



Рассмотрим самый простой пример. Предположим, что мы захотели поделить наших котиков по размеру. Очевидно, что чем больше два котика похожи друг на друга, тем больше шансов, что они окажутся в одной группе. Чтобы понять степень похожести, надо просто найти разность между размерами — чем она меньше, тем более похожими являются наши котики.



Итак, мы вычисляем все возможные разности между размерами котиков. Далее пара самых похожих котиков объединяется в группу (или кластер). Затем мы вновь вычисляем разности. А затем опять объединяем самых похожих. И так происходит до тех пор, пока у нас все котики не объединятся в один большой кластер.

15