Статистика и котики - Страница 19


К оглавлению

19

МЕРЫ РАЗЛИЧИЙ ДЛЯ НЕСВЯЗАННЫХ ВЫБОРОК

Позволяют определить различия между двумя несвязанными выборками. Наличие значимых различий по определенному признаку позволяет с некоторой уверенностью говорить о том, что генеральные совокупности также различаются. Эти методы делятся на параметрические и непараметрические. Первые желательно использовать только тогда, когда ваши данные удовлетворяют следующим требованиям.

1. Данные представлены в метрической шкале. Иными словами, признаки должны быть представлены в определенных единицах измерения (см, кг, сек. и т. д.)

2. Большое число наблюдений (от 30, но лучше более 100).

3. Распределение значений признаков приблизительно соответствует нормальному.

4. Отсутствуют выбросы (значения, на порядок отличающиеся от среднего).

Непараметрические меры различий работают и без этих допущений. Наиболее часто используемые меры различий представлены в таблице.



Пример: предположим, что вы выращиваете помидоры, и вам необходимо определить, какой из двух сортов демонстрирует лучшую урожайность. Чтобы это сделать, вам необходимо подсчитать количество помидоров при каждом кусте и занести эту информацию в таблицу. Дальше вы применяете к этим данным t-критерий Стьюдента и по нему судите о наличии различий между сортами. Если сортов больше двух, то ваш выбор — дисперсионный анализ с последующим сравнением с помощью специальных post-hoc-критериев.


МЕРЫ РАЗЛИЧИЙ ДЛЯ СВЯЗАННЫХ ВЫБОРОК

Позволяют определить различия между двумя связанными выборками. Также делятся на параметрические и непараметрические:



Пример: Представим, что вы преподаватель курсов повышения квалификации, и вам интересно узнать, вынесли ли ваши слушатели что-нибудь полезное с занятий. Чтобы это сделать, вам необходимо разработать некоторый проверочный тест и раздать его слушателям до начала занятий и после их окончания. T-критерий Вилкоксона позволит вам проверить, стали ли слушатели лучше знать ваш предмет. Если же вы провели несколько таких измерений, то ваш вариант — это критерий Фридмана.


МЕРЫ СВЯЗИ

Данный класс критериев (называемых также коэффициентами корреляции) позволяет найти взаимосвязь между переменными. Математически взаимосвязь — это совместное изменение переменных.

Если она положительна и равна 1, то увеличение значения первой переменной сопровождается увеличением значения второй. Если она отрицательна (-1), то высокое значение первой переменной сопровождается низким значением второй. Коэффициент корреляции, равный 0, обозначает отсутствие взаимосвязи.

Самыми популярными коэффициентами корреляции являются r Пирсона (параметрический) и p Спирмена (непараметрический).

Пример: вы решили провести психологическое исследование и выяснить, существует ли взаимосвязь между интеллектом и уровнем дохода. Для этого вам необходимо найти группу испытуемых, измерить их интеллект, узнать их среднемесячный доход и найти коэффициент корреляции. Если он высок и положителен, то более интеллектуальные люди получают больше денег.

Если вы получили подобный результат, необходимо быть очень внимательными при его интерпретации. Поскольку равновероятными могут быть следующие варианты.

Более умные люди получают работу с более высоким заработком.

Высокий доход позволяет больше времени уделять саморазвитию в целом и развитию интеллекта в частности.

Существует неизвестная переменная (фактор), обусловливающая эту взаимосвязь.

Взаимосвязь является случайным совпадением.


РЕГРЕССИОННЫЙ АНАЛИЗ

Данная группа методов позволяет построить функциональную математическую модель — уравнение, которое помогает предсказать значение некоторой целевой переменной, используя значения ряда переменных, называемых предикторами.

Наиболее распространенными методами регрессионного анализа являются линейная и логистическая регрессии. Линейная регрессия позволяет предсказать точное количественное значение некоторой переменной, представленной в метрической шкале. Логистическая регрессия позволяет предсказать вероятность принадлежности объекта к тому или иному классу.

Пример: предположим, вы управляете сетью розничных магазинов и хотите получить представление о том, какие факторы влияют на ежемесячную выручку в этих магазинах. Для этого вы должны замерить все возможные факторы, которые, по вашему мнению, могут на эту выручку повлиять: количество людей, посещающих магазин, число сотрудников на кассах, наличие на полках определенного товара и т. д. Затем необходимо построить линейную регрессию, указав в качестве целевой переменной выручку с этих магазинов, а в качестве предикторов — все, что вы замерили.

Получив регрессионную модель, вы сможете не только посмотреть, какие факторы влияют на продажи, но и предсказать, какую выручку будет получать магазин при определенных условиях.

Если вы немного скорректируете вашу задачу и примените метод логистической регрессии, то вы сможете узнать условия, при которых ваш магазин будет прибыльным или убыточным.

19