H-КРИТЕРИЙ КРАСКЕЛЛА-УОЛЛЕСА
Как найти: Анализ —> Непараметрические критерии —> Устаревшие диалоговые окна -> Для K независимых выборок.
Что вводить:
1. Переместите переменные, по которым хотите найти различия, в поле «Список проверяемых переменных».
2. Переместите переменную, которая делит ваши объекты на группы (т. е. на несвязанные выборки), в поле «Группировать по».
3. Задайте группы, указав диапазон их значений. Например от 1 до 3 в случае, если у вас 3 группы.
Дополнительные опции: ничего интересного.
Куда смотреть: смотрим в таблицу «Статистические критерии». Абсолютное значение критерия скрывается в строчке «Хи-квадрат». Если «Асимптотическая значимость меньше 0,05», то влияние фактора можно считать значимым.
T-КРИТЕРИЙ СТЬЮДЕНТА ДЛЯ СВЯЗАННЫХ ВЫБОРОК
Как найти: Анализ —> Сравнение средних —> T-критерий для парных выборок.
Что вводить: переместите пары переменных, обозначающих связанные выборки в поле «Парные переменные».
Дополнительные опции: ничего интересного.
Куда смотреть: смотрим в таблицу «Критерий парных выборок» на последние столбцы. «T» — значения критерия, а «Знач. (двухсторонняя)» показывает p-уровень значимости. Если он меньше 0,05 — различия имеются.
Если вы хотите узнать, у какой группы соответствующий показатель больше, смотрите в таблицу «Статистика парных выборок» (столбец «Среднее»).
ДИСПЕРСИОННЫЙ АНАЛИЗ ДЛЯ ПОВТОРНЫХ ИЗМЕРЕНИЙ
Как найти: Анализ —> Общая линейная модель —> ОЛМ-повторные измерения.
Что вводить:
1. Задайте имя внутригруппового фактора, по которому разделяются ваши связанные выборки, число уровней (кол-во связанных выборок) и нажмите кнопку «Добавить».
2. Переместите переменные, обозначающие ваши связанные выборки, в поле «Внутригрупповые переменные».
Дополнительные опции: если у вас имеются несвязанные выборки, то вы можете включить их в анализ, добавив соответствующую переменную в межгрупповые факторы.
В разделе «Графики» вы можете настроить выдачу графиков средних по каждому фактору.
Куда смотреть: смотрим в таблицу «Критерии внутригрупповых эффектов» (блок с названием внутригруппового фактора). Там — четыре критерия, у которых чаще всего одинаковые значения (столбец F). Если «Значимость» при них меньше 0,05, то связанные выборки различаются между собой.
T-КРИТЕРИЙ ВИЛКОКСОНА
Как найти: Анализ —> Непараметрические критерии —> Устаревшие диалоговые окна —> Для двух связанных выборок.
Что вводить: переместите пары переменных, обозначающих связанные выборки, в поле «Тестовые пары».
Дополнительные опции: если хотите, можете посмотреть различия по другим критериям. Например, по критерию знаков.
Куда смотреть: смотрим в таблицу «Статистические критерии». T-критерия Вилкоксона вы в ней не найдете — вместо него так называемая Z-статистика, рассчитанная на основе этого критерия. Ее вполне можно вставлять в вашу работу.
P-уровень значимости можно найти в строчке «Асимптотическая значимость (2-сторонняя)». Если он меньше 0,05, ваши выборки значимо различаются. Если же больше 0,05, то таких различий обнаружено не было.
КРИТЕРИЙ ФРИДМАНА
Как найти: Анализ —> Непараметрические критерии —> Устаревшие диалоговые окна —> Для K связанных выборок.
Что вводить: переместите переменные, обозначающие связанные выборки, в поле «Проверяемые переменные».
Дополнительные опции: ничего интересного.
Куда смотреть: смотрим в таблицу «Статистические критерии». Абсолютное значение критерия скрывается в строчке «Хи-квадрат». Если «Асимптотическая значимость меньше 0,05», то влияние фактора можно считать значимым.
КОЭФФИЦИЕНТЫ КОРРЕЛЯЦИИ ПИРСОНА И СПИРМЕНА
Как найти: Анализ —> Корреляции —> Парные.
Что вводить:
1. Переместите переменные, между которыми вы хотите найти взаимосвязи, в поле «Переменные».
2. Выберите нужный коэффициент корреляции.
Дополнительные опции: ничего интересного.
Куда смотреть: программа выдаст вам корреляционную матрицу (таблица «Корреляции» или «Непараметрические корреляции»). Чтобы посмотреть в ней коэффициент корреляций между переменными А и Б, нужно найти строчку с переменной А и столбик с переменной Б и посмотреть, где они пересекаются.
Сверху будет коэффициент корреляции, а чуть ниже — уровень значимости (двухсторонний). Если он ниже 0,05, то связь между переменными действительно присутствует.
ЛИНЕЙНАЯ РЕГРЕССИЯ
Как найти: Анализ —> Регрессия —> Линейная…
Что вводить:
1. Переместите целевую переменную в поле «Зависимая переменная».
2. Переместите переменные-факторы в «Независимые переменные».
Дополнительные опции: на главном окне вы можете выбрать метод линейной регрессии. Как правило, «Ввод» и «Пошагово».
Нажав на кнопку «Статистики», вы сможете выбрать некоторые дополнительные коэффициенты, которые выдаст вам программа.
Куда смотреть: смотрим в таблицу «Коэффициенты». Там нас будут интересовать два столбца — «B» и «Значимость». В первом из них — регрессионные коэффициенты. Во втором — p-уровень значимости. Если он меньше 0,05, то данный фактор является значимым.