Вторая интересующая нас таблица — сводка для модели. Смотрим столбец «Скорректированный R-квадрат». В нем — коэффициент детерминации, который скажет, какой процент ваших данных объясняет модель. R-квадрат, равный 0,92, обозначает, что 92% ваших данных объясняется вашей моделью.
ЛОГИСТИЧЕСКАЯ РЕГРЕССИЯ
Как найти: Анализ —> Регрессия —> Логистическая…
Что вводить:
1. Переместите целевую переменную в поле «Зависимая переменная».
2. Переместите переменные-факторы в «Ковариаты».
Дополнительные опции: на главном окне вы можете выбрать метод логистической регрессии. По умолчанию установлен «Ввод» (или «Enter»).
Нажав на кнопку «Параметры», вы сможете выбрать некоторые дополнительные статистики и графики. Также я очень рекомендую поставить галочку в графе «На последнем шаге».
Куда смотреть: пролистываем вывод вниз (до Блок 1) и смотрим в таблицу «Переменные в уравнении». Интересуют нас два столбца: «B» и «Значимость». Первый содержит регрессионные коэффициенты. Второй — p-уровень значимости. Если он меньше 0,05, то данный фактор является значимым.
Вторая таблица — «Сводка для модели». Смотрим столбец «R-квадрат Нэйджелкерка». Этот коэффициент показывает, сколько процентов ваших данных объясняет полученная модель. R-квадрат, равный 0,92, обозначает, что 92% ваших данных объясняется вашей моделью.
И последнее — «Таблица классификации». Она позволяет сравнить, насколько результаты, предсказываемые моделью, совпадают с реальными.
ДИСКРИМИНАНТНЫЙ АНАЛИЗ
Как найти: Анализ —> Классификация —> Дискриминантный анализ.
Что вводить:
1. Переместите переменную, делящую ваши объекты на группы, в поле «Группировать по». Далее — задайте диапазон, в котором находятся ваши группы (допустим от 1 до 3, если группы обозначаются как 1, 2 и 3).
2. Переместите остальные переменные в поле «Независимые».
3. Нажмите кнопку «Статистики» и отметьте «Однофакторный дисперсионный анализ».
4. Нажмите кнопку «Классифицировать» и отметьте «Итоговая таблица».
Дополнительные опции: на главном окне вы можете выбрать метод дискриминантного анализа («Принудительное включение» или «Шаговый отбор»).
В окне «Статистики» вы также можете выбрать «Средние», что даст описательную статистику по каждой из групп.
Куда смотреть: в таблице «Критерии равенства групповых средних» можно посмотреть, какие переменные значимо разделяют ваши объекты на группы (столбцы «F» и «Значимость»). Если значимость меньше 0,05, то разделяет.
Значения коэффициентов стандартизованной канонической дискриминантной функции можно найти в одноименной таблице (если это действительно необходимо).
Что касается меры качества, то таковой может служить таблица «Результаты классификации». В ячейках [0,0] и [1,1] находятся правильно классифицированные объекты, а в остальных — ошибочно определенные.
ИЕРАРХИЧЕСКАЯ КЛАСТЕРИЗАЦИЯ
Как найти: Анализ —> Классификация —> Иерархическая кластеризация…
Что вводить:
1.Переместите признаки, по которым ваши объекты будут распределяться на группы, в поле «Переменные».
2. В разделе «Графики» отметьте галочкой «Дендрограмма».
Дополнительные опции: нажав кнопку «Статистики», вы можете потребовать у компьютера вывести принадлежность объектов к кластерам на том или ином этапе кластеризации. Кроме того, у него можно затребовать матрицу расстояний между объектами (она же — «Матрица близостей»).
В разделе «Метод» вы можете выбрать способ выделения кластеров, а также меру расстояния.
Куда смотреть: на дендрограмме показана принадлежность объектов к тому или иному классу на всех этапах кластеризации.
Если же вы отметили соответствующую галочку, то вы можете посмотреть принадлежность объектов к кластеру на определенном этапе кластеризации в таблице «Принадлежность к кластерам».
К-СРЕДНИХ
Как найти: Анализ —> Классификация —> Кластеризация К-средними.
Что вводить:
1. Переместите признаки, по которым ваши объекты будут распределяться на группы, в поле «Переменные».
2. Выберите число кластеров.
3. В разделе «Параметры» отметьте «Конечный кластер для каждого наблюдения».
Дополнительные опции: ничего интересного.
Куда смотреть: из таблицы «Принадлежность к кластерам» можно увидеть, какой объект к какому кластеру принадлежит.
А в таблице «Конечные центры кластеров» расположены координаты каждого центроида.
ФАКТОРНЫЙ АНАЛИЗ
Как найти: Анализ —> Снижение размерности —> Факторный анализ.
Что вводить:
1. Переместите переменные, на основе которых будут выделяться факторы, в поле «Переменные».
2. Нажмите на кнопку «Вращение» и выберите метод вращения (чаше всего «варимакс»).
Дополнительные опции: в разделе «Извлечение» можно выбрать метод извлечения, вывести график собственных значений или настроить количество факторов, которые выделятся по итогу.
Куда смотреть: результаты факторного анализа находятся в «Повернутой матрице компонентов». Там — коэффициенты корреляции между факторами и отдельными переменными.